Ein Nanolaser aus Gold und Zinkoxid
Die Physikerinnen und Physiker stellten für ihre Studie Nano-Materialien her, die die optischen Eigenschaften von Metallen und Halbleitern kombinieren. Den Ausgangspunkt der Untersuchung bildeten schwammartige Teilchen aus Gold mit einem Durchmesser von einigen hundert Milliardstel Metern (Nanometern) und Poren mit einer Größe von rund zehn Nanometern. Die Materialwissenschaftler Dr. Dong Wang und Prof. Dr. Peter Schaaf von der Technischen Universität Ilmenau stellten diese Metallschwämme her und entwickelten ein Verfahren, um sie mit einer dünnen Schicht aus dem Halbleiter Zinkoxid zu überziehen. Das Material dringt dabei auch in die winzigen Poren ein.
Die so hergestellten Teilchen sind in der Lage, die Farbe von einfallendem Licht zu verändern. Bestrahlt man sie etwa mit dem Licht eines roten Lasers, geben sie kurzwelligeres, blaues Laserlicht ab. Die abgestrahlte Farbe hängt dabei von den Eigenschaften des Materials ab. „Solche so genannten nichtlinearen optischen Nanomaterialien herzustellen, ist eine der großen Herausforderungen der derzeitigen Optik-Forschung“, berichtet der Oldenburger Physiker Dr. Jin-Hui Zhong. In zukünftigen optischen Computern, die mit Licht statt mit Elektronen rechnen, könnten derartige Nanopartikel als winzige Lichtquellen dienen. „Man könnte solche Partikel auch als Nanolaser bezeichnen“, ergänzt Prof. Dr. Christoph Lienau von der Universität Oldenburg, der zusammen mit Dr. Jan Vogelsang von der Universität Lund in Schweden Hauptautor der Studie ist. Mögliche Einsatzorte wären beispielsweise ultraschnelle optische Schalter oder Transistoren.
Um aufzuklären, wie die Nanomaterialien Licht einer Farbe in eine andere umwandeln, nutzten Teammitglieder um Prof. Dr. Anne L’Huillier und Prof. Dr. Anders Mikkelsen von der Universität Lund ein besonderes mikroskopisches Verfahren, die ultraschnelle Photoemissions-Elektronenmikroskopie. Mit Hilfe von extrem kurzen Lichtblitzen konnten sie nachweisen, dass Licht tatsächlich effizient in den Nanoporen konzentriert wird – eine wichtige Voraussetzung für zukünftige Anwendungen.
Prof. Dr. Erich Runge, Physiker von der Technischen Universität Ilmenau, simulierte die Eigenschaften des Materials zusätzlich mit theoretischen Modellen. Wie das Team berichtet, bieten aus Metallen und Halbleitern zusammengesetzte Nanopartikel wahrscheinlich neue Möglichkeiten, um die Eigenschaften des abgestrahlten Lichtes nach Wunsch zu justieren. Die Studie liefert damit grundlegende neue Einblicke dazu, wie hybride Metall-Halbleiter-Nanostrukturen Licht verstärken. Darüber hinaus könnten die Beobachtungen dazu beitragen, Materialien mit noch besseren optischen Eigenschaften zu entwickeln.
Originalartikel: Jin-Hui Zhong, Jan Vogelsang, Jue-Min Yi, Dong Wang, Lukas Wittenbecher, Sara Mikaelsson, Anke Korte, Abbas Chimeh, Cord L. Arnold, Peter Schaaf, Erich Runge, Anne L’Huillier, Anders Mikkelsen, Christoph Lienau: „Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure“, Nature Communications. doi.org/10.1038/s41467-020-15232-w
Technische Universität Ilmenau
Ehrenbergstraße 29
98693 Ilmenau
Telefon: +49 (3677) 69-0
Telefax: +49 (3677) 69-1701
http://www.tu-ilmenau.de
Medien
Telefon: +49 (3677) 69-2549
E-Mail: bettina.wegner@tu-ilmenau.de
Leiter Medien- und Öffentlichkeitsarbeit
Telefon: +49 (3677) 69-5003
E-Mail: marco.frezzella@tu-ilmenau.de
Fachgebiet Werkstoffe der Elektrotechnik
Telefon: +49 (3677) 69-3170
E-Mail: dong.wang@tu-ilmenau.de